Fast Linearized Augmented Lagrangian Method for Euler’s Elastica Model
نویسندگان
چکیده
Recently, many variational models involving high order derivatives have been widely used in image processing, because they can reduce staircase effects during noise elimination. However, it is very challenging to construct efficient algorithms to obtain the minimizers of original high order functionals. In this paper, we propose a new linearized augmented Lagrangian method for Euler’s elastica image denoising model. We detail the procedures of finding the saddle-points of the augmented Lagrangian functional. Instead of solving associated linear systems by FFT or linear iterative methods (e.g., the Gauss-Seidel method), we adopt a linearized strategy to get an iteration sequence so as to reduce computational cost. In addition, we give some simple complexity analysis for the proposed method. Experimental results with comparison to the previous method are supplied to demonstrate the efficiency of the proposed method, and indicate that such a linearized augmented Lagrangian method is more suitable to deal with large-sized images. AMS subject classifications: 65M55; 68U10; 94A08
منابع مشابه
A Fast Augmented Lagrangian Method for Euler’s Elastica Models
In this paper, a fast algorithm for Euler’s elastica functional is proposed, in which the Euler’s elastica functional is reformulated as a constrained minimization problem. Combining the augmented Lagrangian method and operator splitting techniques, the resulting saddle-point problem is solved by a serial of subproblems. To tackle the nonlinear constraints arising in the model, a novel fixed-po...
متن کاملA Fast Augmented Lagrangian Method for Euler's Elastica Model
In this paper, a fast algorithm for Euler’s elastica functional is proposed, in which the Euler’s elastica functional is reformulated as a constrained minimization problem. Combining the augmented Lagrangian method and operator splitting techniques, the resulting saddle-point problem is solved by a serial of subproblems. To tackle the nonlinear constraints arising in the model, a novel fixed-po...
متن کاملImage Segmentation Using Euler's Elastica as the Regularization
The active contour segmentation model of Chan and Vese has been widely used and generalized in different contexts in the literature. One possible modification is to employ Euler’s elastica as the regularization of active contour. In this paper, we study the new effects of this modification and validate them numerically using the augmented Lagrangian method.
متن کاملTensor Based Second Order Variational Model for Image Reconstruction
Second order total variation (SOTV) models have advantages for image reconstruction over their first order counterparts including their ability to remove the staircase artefact in the reconstructed image, but they tend to blur the reconstructed image. To overcome this drawback, we introduce a new Tensor Weighted Second Order (TWSO) model for image reconstruction. Specifically, we develop a nove...
متن کاملSupervised learning via Euler's Elastica models
This paper investigates the Euler’s elastica (EE) model for high-dimensional supervised learning problems in a function approximation framework. In 1744 Euler introduced the elastica energy for a 2D curve on modeling torsion-free thin elastic rods. Together with its degenerate form of total variation (TV), Euler’s elastica has been successfully applied to low-dimensional data processing such as...
متن کامل